
反函数导数怎么求
y=arcsinx y'=1/√(1-x^2) 反函数的导数: y=arcsinx, 那么,siny=x, 求导得到,cosy *y'=1 即 y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2) 扩展资料: 引用的常用公式 在推导的过程中有这几个常见的公式需要用到: ⒈(链式法则)y=f[g(x)],y'=f'[g(x)]·g'...

倒导数运算法则
这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。 导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。 几何意义 函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0...