1、一元三次方程的求根公式称为“卡尔丹诺公式”。一元三次方程的一般形式是x3+sx2+tx+u=0。
2、如作一个横坐标平移y=x+s/3,那么就可以把方程的二次项消去。所以只要考虑形如x3=px+q的三次方程。
3、例子:假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。
代入方程:a3-3a2b+3ab2-b3=p(a-b)+q
整理得到:a3-b3=(a-b)(p+3ab)+q;由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,3ab+p=0。这样上式就成为a3-b3=q两边各乘以27a3,就得到27a6-27a3b3=27qa3。由p=-3ab可知,27a6+p=27qa3这是一个关于a3的二次方程,所以可以解得a。
三次方程形式为:ax3+bx2+cx+d=0。标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0)。其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。
1一元三次方程求根公式
三次方程形式为:ax3+bx2+cx+d=0。
标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0)
其解法有:
1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;
2、中国学者范盛金于1989年发表的盛金公式法。
2一元三次方程组
1、x³+3x²+3x+1=0;
2、8x³-36x²+54x-27=0;
3、x³-27x²+243x-729=0;
4、343x³+588x²+336x+64=0;
5、x³-36x²+432x-1728=0;
6、x³+4x²+11x+14=0;
7、x³+6x²+16x+21=0;。