百科

二项式展开公式

  • 喜欢学习网
  • 2024-05-16 17:23:15

二项式展开公式

二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。

二项展开式的性质

1、项数:n+1项;

2、第k+1项的二项式系数是Cₙᵏ;

3、在二项展开式中,与首末两端等距离的两项的二项式系数相等;

4、如果二项式的幂指数是偶数,中间的一项的二项式系数最大。如果二项式的幂指数是奇数,中间两项的的二项式系数最大,并且相等。

用数学归纳法证明二项式定理

证明:当n=1时,左边=(a+b)1=a+b

右边=C01a+C11b=a+b;左边=右边

假设当n=k时,等式成立,即(a+b)n=C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn成立;

则当n=k+1时, (a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*(a+b)

=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*a+[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*b

=[C0na(n+1)+C1n anb十…十Crn a(n-r+1)br十…十Cnn abn]+[C0nanb+C1n a(n-1)b2十…十Crn a(n-r)b(r+1)十…十Cnn b(n+1)]

=C0na(n+1)+(C0n+C1n)anb十…十(C(r-1)n+Crn) a(n-r+1)br十…十(C(n-1)n+Cnn)abn+Cnn b(n+1)]

=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1) a(n-r+1)br+…+C(n+1)(n+1) b(n+1)

∴当n=k+1时,等式也成立;

所以对于任意正整数,等式都成立。

此定理指出

1、(a+b)^n的二项展开式共有n+1项,其中各项的系数Cnr(r∈{0,1,2,……,n})叫做二项式系数。

等号右边的多项式叫做二项展开式。

2、二项展开式的通项公式(简称通项)为C(n,r)(a)^(n-r)b^r,用Tr+1表示(其中"r+1"为角标),即通项为展开式的第r+1项(如下图),即n取i的组合数目。

因此系数亦可表示为杨辉三角或帕斯卡三角形

二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式。

(a+b)n的系数表为

1 n=0

1 1 n=1

1 2 1 n=2

1 3 3 1 n=3

1 4 6 4 1 n=4

1 5 10 10 5 1 n=5

1 6 15 20 15 6 1 n=6

…………………………………………………………

(左右两端为1,其他数字等于正上方的两个数字之和)

补充

在中国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。

在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在中国比在欧洲要早500年左右。

杨辉三角

1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了展开式,但并未给出进一步证明。

1811年,高斯对此进行了严格的证明,结果表明牛顿的猜想是正确的。

相关文章

  • 跨专业心理学考研是否有要求
  • 哦亚西啥意思
  • 宜昌初中排名
  • 商户单号是多少位
  • big怎么自然拼读
  • 争辩的近义词是什
  • 慢慢开头的成语
  • 柯南集数每集名称
  • 耽美词语的意思
  • 两字好词加四字的好词急用
  • 单相思什么意思(单相思是一种病吗)
  • 世界上最凶猛的海底恐龙(世界上最凶猛的恐龙是什么龙)
  • 东北乔四爷霸占的女明星名单(东北乔四爷霸占的24位都是谁)
  • 2008年日历表(2008年日历表格)
  • 笙歌鼎沸(笙歌鼎沸南湖荡)
  • 世界上十大节日(世界上十大节日排名)
  • 2012年日历(2012年日历全年表)
  • 世界十大最好高中(世界十大最好高中学校排名)
  • 世界十大银饰品(世界排名前十的银饰)
  • 北京地铁是送鬼的(北京地铁是送鬼的视频)