三角函数cos公式表

三角函数cos公式有

cosA=(b^2+c^2-a ^2)/2bc; cosB=(a~2+c^2-b^2)/2ac; cosC=(a^2+b^2-c 2)/2ab等。

余弦定理的公式

a b c为三角形3边ABc为3边所对角

cosA=(b^2+c~2-a^2)/2bc

cosB=(a ^2+c~2-b^2)/2ac

cosC=(a^2+b^2-c^2)/2ab

c 2=a ^2+b 2-2ab*cosC

cos(a-b)=cosaco***+sinasinb

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos^ 2a-1)cosa-2(1-cos~2a)cosa

=4cos~3a-3cosa

三角函数cos公式

cos(-a) = cos(a)

sin(T /2 - a) = cos(a)

cos(T /2 - a) = sin(a)

sin(T /2 + a) = cos(a)

cos(T /2 + a) = - sin(a)

cos(T - a) = - cos(a)

cos(T + a) = - cos(a)

sin(a + b) = sin(a)cos(b) + cos( a )sin(b)

cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]

sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]

补充

倍角公式

1、Sin2A=2SinA*CosA

2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )

降幂公式

1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

推导公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

两角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化积

1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

积化和差

1、sinαsinβ = [cos(α-β)-cos(α+β)] /2

2、sinαcosβ = [sin(α+β)+sin(α-β)]/2

3、cosαsinβ = [sin(α+β)-sin(α-β)]/2

诱导公式

1、(-α) = -sinα、cos(-α) = cosα

2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα

3、3cos(π/2+α) = -sinα

4、(π-α) = sinα、cos(π-α) = -cosα

5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα

6、tan(π-α)=-tanα、tan(π+α)=tanα

锐角三角函数公式

1、sin α=∠α的对边 / 斜边

2、α=∠α的邻边 / 斜边

3、tan α=∠α的对边 / ∠α的邻边

4、cot α=∠α的邻边 / ∠α的对边

其他文章